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Units 
Most everything we observe and measure can be described in terms of number, time, 

distance, and mass. Although all quantities are related via units of energy, in practice we 
distinguish between fundamental units and derived units, where derived units are composed of 
the fundamental units of time (seconds, s), distance (meters, m), and mass (kilograms, kg). Some 
examples: 
 

Observed 
Quantity 

Symbol 
(depends 

upon 
context) 

Units What Are We Really Measuring? 

Number n  How many are there? 
Time t s The time interval between two events 
Rate R /s How many per second 

Length L m The distance between two locations (points) 

Position  (m, m, m,…) 
You need to specify one length for every dimension in your 

system in order to specify a position relative to the orgin of that 
system. Angular coordinates can replace lengths. 

Mass m kg How much ‘stuff’ there is 
Speed v m/s Distance per time, direction unspecified 

Velocity v m/s Distance per time, direction specified  
Area A m2 The product of two distances 

Volume V m3 The product of three distances 
Density ρ kg/m3 Mass per volume 

Kinetic Energy KE J Energy of motion. The heavier and faster something is, the more 
energy of motion it has. KE = ½ mv2 

Potential Energy PE J 

Stored energy. The farther you pull something away from an 
equilibrium position, the more potential energy it has.  

Like lifting an object, or compressing a spring. 
PE = mgh (pulling against gravity) 

Acceleration a (m/s) / s How fast the speed or velocity is changing 

Force F N 
How hard something is pushing or pulling 

F = ma (Newton’s second law) 
Work W J How much energy is spent or invested. W = Fd 

Charge q coulombs 
How many electrons or protons are collected in a certain location. 

One mole of electrons (6.022 x 1023) has a charge of 96,500 
coulombs (called Faraday’s constant).  

  
Questions to Ponder 
a) Of course, there are many more quantities that we observe and measure. Can you think of some? 
b) Modern philosophers/scientists suggest that there is no such thing as ‘time,’ that it is merely 

derived from other quantities. How do we measure time? 
c) How are PE and Work related? 
d) How would you quantify paranormal or supernatural phenomena? 
e) Einstein derived the formula E = mc2. What are the implications? What do the units tell you 

about physical reality? 
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Transducers 
A transducer is a device that converts a quantity of interest into a conveniently measurable 

quantity. For example, a thermometer converts the temperature of a system into a distance. A 
ruler converts a distance into a number. A bathroom scale converts a weight (force due to 
gravity) into a rotation on a dial. Modern transducers typically produce a voltage (electrical 
potential energy) proportional to the quantity of interest (e.g. temperature, pressure, force, 
distance), so that a simple linear relationship can be used to obtain the quantity of interest (e.g. 
volts per degree).  
 
Questions to Ponder 

a) Our body contains many transducers. Each of our senses converts a physical 
phenomenon into a signal that the brain can interpret. How is this accomplished? 

b) The speedometer in your car is a transducer. How does it work? There are both 
mechanical and electronic speedometers. 

c) Can you think of other transducers in nature? 
d) The concept of transducers can be extrapolated to many other areas of thought. For 

example, the worse the behavior, the higher the count of spankings. Try to generalize the 
idea of transducers. What other situations apply?     

Accuracy vs. Precision, Analog vs. Digital 
Physical quantities are exactly what they are (profound, eh?), and Nature is typically integerial 

or analog. Examples are: “How many electrons are there?” (integerial), or, “How high did you 
lift the object?” (analog). It is possible to exactly record the numbers of things (“I have three 
pennies in my pocket.”), but when we measure analog quantities we must approximate them with 
numbers (“I weigh about 190.2 lbs.”). The more decimal places we use to express an analog 
quantity, the more precisely we are approximating it. If the device we are using to measure a 
physical quantity is not calibrated correctly, then we may be precisely recording a result that is 
not accurate.  

Once we have obtained a number which approximates a phenomenon, we need to record it. 
Traditionally, values are recorded in a laboratory notebook. In modern systems, electronic means 
(tapes, computers) are also used. This presents another issue; how do we represent a quantity in a 
computer? If the number is integerial and small enough, the number can be expressed exactly as 
an integer, routinely up to 232 (4,294,967,296). Analog values are typically approximated to the 
degree of precision required by the situation, the data acquisition rate, and the amount of storage 
available. For example,  

• In digital cameras there is a tradeoff between the quality of the photos and the number 
that can be stored. If you are planning to make large enlargements of the photos, you 
should use the highest resolution available to obtain the best looking print later. If you 
are merely documenting an event, then you can dramatically increase the number of 
photos you can store by storing the photos with less color and pixel resolution.   

• If you are recording the music in a concert, then you typically only need to record it 
to 20 bits of resolution (one part in 220 is about one part per million), since very few 
people can hear a difference that small. A recording of lower fidelity (fewer bits, 
lower precision) might still be sufficient if the range of the signal is small (not too 
loud or too soft).  
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Digital values are not only convenient for manipulation and storage, but also for transmission. 
For example, most radio signals are transmitted in analog form (AM and FM). Interference 
reduces the volume of the signal and/or produces static (noise produced when stray signals are 
amplified or the amplitude of the real signal is slightly changed). On the other hand, Digital 
signals are composed of “on/off” states (binary, bits), so transmission fidelity is perfect assuming 
all the bits are received. Let’s say you are transmitting the number ‘153.’ In binary, this number 
is represented (8 bits) as ‘10011001.’ It doesn’t matter how strongly the ‘ones’ are received, just 
so long as they are sufficiently strong that they can be distinguished from the background noise. 
In analog transmission, the number might be received as 154 or 151, reducing the fidelity. 
Digital cell phones, satellite TV, and the internet are examples of high-fidelity signal 
transmission via digital values.     

Scientific Notation 
Scientists routinely make and record a very large range of measurements. Of course, they are 

concerned about both accuracy and precision. Atomic clocks resolve atomic vibrations 
(0.000000000000001 seconds, or 10-15 seconds), and astronomers measure ‘astronomical’ 
distances and masses. The average distance from the Earth to the sun is 1.50 x 1011m 
(150,000,000,000 meters) and the Earth’s mass is 5.98 x 1024 kg 
(5,980,000,000,000,000,000,000,000 kilograms). Lots of zeroes, eh? Can you imagine having to 
write them out all the time? Accordingly, scientists have developed a convenient convention for 
precisely recording a large range of values, called Scientific Notation. (By the way, this is a 
great, intuitive opportunity to review logarithms.) 

Scientific notation consists of three numbers (the coefficient, the base, and the exponent), but 
also includes some additional important ideas. Consider the mass of the earth, 5.98 x 1024kg. If I 
were to express this quantity as 6 x 1024kg I would not be incorrect, just less precise (one instead 
of three significant figures). Note that the number of digits in the coefficient reveals the precision 
(not the accuracy) to which the quantity is expressed. I am reminded of the Star Trek episode 
where Captain Kirk asks Spock how long it will take to get to their destination. Spock replies 
something like “22 hours, 3 minutes, and seven seconds.” Captain Kirk smirks, and says that 
“about 22 hours” would have been a sufficient answer. In other words, the precision one uses to 
record and report data depends upon the precision of the original measurements, the subsequent 
calculations employed, and the intended use of the values.   

Table 1. Sizing Things Up in Base Ten 
ORDER DECIMAL PREFIX EXAMPLE  

10-15 0.000000000000001 fempto- atomic vibrations (fs), electron radius (fm) 
10-12 0.000000000001 pico- wavelength of X-rays (pm) 
10-10 0.0000000001 (Angstroms, Å) chemical bond lengths are in Å 

10-9 0.000000001 nano- diameter of molecules (nm) 
10-6 0.000001 micro- diameter of red blood cell (m) 
10-3 0.001 milli- thickness of a dime (mm) 
10-2 0.01 centi- Width of your pinky (2.54 cm/inch) 
10-1 0.1 deci- Width of a hand (dm) 
100 1  n/a I’m about 2m tall 
101 10 deca- The crest of my roof is 1dam 
102 100 hecto- Close to the 100 yard dash 
103 1,000 kilo- A kilometer is about 0.62 miles 
106 1,000,000 mega- Millions. Lifetime earnings in dollars. 
109 1,000,000,000 giga- Billions. My computer has 2gbyte RAM 
1012 1,000,000,000,000 tera- Trillions. Computer operations per second. 
1015 1,000,000,000,000,000 peta How far light travels in a month (Pm) 
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Questions to Ponder 
a) Sometimes it is difficult for us to visualize very large and very small numbers. Try to think 

of something tangible in your experience for each order of magnitude.  
b) How many molecules tall are in your body? 
c) Light from the moon is about a second old. Light from the sun is about eight minutes old. In 

other words, when we ‘look’ at them, we are actually seeing what the moon was like one 
second ago, and what the sun was like eight minutes ago. When we see both at the same 
time, we are simultaneously observing two different moments in history. 

Significant Figures 
The way one records and reports numbers is very important, especially in science. This is 

because the context and the number itself reveal how the measurements were made and the 
significance of the digits themselves. The convention in science is to indicate the measurement 
precision by the number of digits used, called significant figures. Zeroes acting as place-holders 
are not significant. Table 2 gives some examples: 

Table 2. Understanding Significant Figures 

Number Significant 
Figures Scientific Notation Explanation 

1234 4 1.234 x 103  
This number is assumed to be measured and 

reported to the nearest 1 (it could have been 1233 
or 1235). 

1230 3 1.23 x 103 
Assumed to be ± 10, or between 1220 to 1240.  

(The zero is a place-holder.)  

1030 3 1.03 x 103 Only the final zero is a place-holder 

1200 2 1.2 x 103 
Assumed to be ± 100, or between 1100 to 1300.  

(The zeroes are place-holders.)  

1230 ± 1 4 1.230 x 103 The precision is unambiguous, and the uncertainty 
tells you that the last zero is significant.  

73½ ± ½ 3 (7.35 ± 0.05) x 101  Showing the ½ in scientific notation makes the 
precision unambiguous. 

0.001 1 1 x 10-3 
The first two zeroes after the decimal point are place-
holders, and the uncertainty in the number is assumed 

to be ±0.001 

0.0010 2 1.0 x 10-3 
The first two zeroes after the decimal point are place-
holders, and the uncertainty in the number is assumed 

to be ±0.0001 

 

The context also matters. If someone asks me my height there are several ways I could answer, 
depending upon the context. At a party I might reply, “about six feet,” and people know that I am 
not saying that it could be five feet or seven feet (6 ± 1 ft). They know I mean ‘plus or minus an 
inch or so’ (72″ ± 2″) because that is the convention in our culture. However, when I’m at the 
doctor’s office, if the nurse asks me, I’ll say 6ft 1½″, because I know they’re trying to keep a 
precise medical record. Based upon my answer the nurse should record 73½″ on my chart. It 
would be a mistake to record 73.5″ or 73.50″, because the number 73.5 implies 73.5 ± 0.1 (three 
significant figures) and the number 73.50 implies 73.50 ± 0.01 (four significant figures), and I 
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did not measure nor report my height to that degree of precision. Technically, the nurse should 
either re-measure me or ask me how precisely I was reporting the number. For example, I could 
say ‘to the nearest ¼ inch’ or ‘the nearest ½ inch.’  

The issue of significant figures comes up all the time in making and reporting measurements, 
as the following examples illustrate, where I measure the dimensions of a nickel in British and 
metric units with both a ruler and a digital caliper. 

Figure 1. Measurement in Inches 
First, I measure the diameter of a nickel with both a 

ruler and a caliper. Note that the ruler has graduations 
every 1/16th of an inch, and that the caliper displays 
digits to the nearest 0.0005 inch (you wouldn’t have 
known about the caliper resolution unless I’d told 
you). I’m pretty good with a ruler, and can reliably use 
it to within a ¼ of a sixteenth, or 1/64th. With the ruler 
I’d say it looks a little longer than 13/16ths, and so I’d 
record a measurement of 53/64 ± 1/64″. Measuring 
with the caliper, I’d report 0.8375 ± 0.0005″. Note that 
the caliper measurement is about thirty times more 
precise than the ruler, but they are equally accurate, 
since the range of ruler values includes the caliper 
value: 

  
Device Minimumm Value Maximum Value Precision 
 Ruler 53/64 - 1/64 = 0.813 53/64 + 1/64 = 0.844 (1/64)/(53/64) = 1.9% 
 Caliper 0.8375 – 0.0005 = 0.837 0.8375 + 0.0005 = 0.8380 0.0005/0.8375 = 0.06%  

 

Figure 2. Measurement in Millimeters 

 

 

Now, I push the “in/mm” button on my caliper 
and flip the ruler over to the mm scale (Figure 2). 
First, note that just because the units have changed, 
the precision of the device has not changed. In other 
words, 0.01/21.27 (0.05%) is about the same as 
0.0005/0.8375 (0.06%). The manufacturer clearly 
understands significant figures! The value on the 
caliper is 21.27mm as expected, since there are 
25.4mm per inch. In this case, I would record 21.27 
± 0.01mm in my notebook. 

Using the ruler, I measure less than 22mm, and since I am only good to about 1/3 mm with a 
ruler I would record 21 2/3 ± 1/3 mm in my notebook. Note that in this case I am less accurate 
with the ruler, as my range of ruler values does not include the correct value. Perhaps I am not as 
good with a ruler as I thought!  

0.813″ 

0.844″ 

Ruler 
Range 

Caliper 0.828″ 

(1/64″) 

(1/64″) 

0.8375″ 


